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Non-destructive damage detection and isolation in structures using modal
information is hindered by the sensitivity of modal frequencies to small changes
in mass, sti!ness, and damping parameters induced by damage. Here, a method
of enhancing modal frequency sensitivity to damage using feedback control is
introduced. Using state feedback, closed-loop modal frequencies are placed at
locations in the complex plane that enhance sensitivity to particular types of
damage. The method is intended for smart structures, which embody self-actuation
and self-sensing capabilities. A simple example introduces the principle of
sensitivity enhancing control for a single-degree-of-freedom structure. Then, the
method is applied to "nite-element models of a cantilevered beam to demonstrate
the magnitude of sensitivity enhancement achievable for modest, local damage.
Methods of implementing sensitivity enhancing full state or output feedback using
point measurements of strain along the beam are described. Simulation results
show that signi"cant enhancement in sensitivity of modal frequencies of vibration
to damage can be achieved using a single actuator and multiple strain sensors
along the beam. The methodology enables a &&dual use'' smart structure*one that
can be used for both vibration suppression and damage detection.
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1. INTRODUCTION

Damage detection and localization is of interest in many structures, from aircraft
wings, helicopter rotor blades, #exible structures, and rotating machinery, to civil
structures such as buildings and bridges. A prevalent method of damage detection
is based on identifying changes in modal frequencies resulting from local
damage-induced changes in sti!ness or mass. Modal methods assume that damage
implies a detectable change in system parameters, and that the change in local
parameters can be identi"ed through examination of global modal frequencies.
Numerous papers report experimental and theoretical results of damage detection
through modal analysis. Representative examples, both past and recent, include
Adams et al. [1], Cawley and Adams [2], Armon et al. [3], Papadopoulos and
Garcia [4], Jian et al. [5], and Swamidas and Chen [6].

While damage normally does imply local changes in sti!ness, mass, damping, or
some combination of parameters, concerns in using modal frequencies to detect
22-460X/99/450987#16 $30.00/0 ( 1999 Academic Press
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damage are as follows: (1) modal frequencies can be very insensitive to small
changes in local sti!ness or mass that would be indicative of damage; therefore,
damage is extremely di$cult to detect until it is substantial, and (2) sensitivity to
changes in sti!ness or mass can be inconsistent, with the sensitivity itself depending
on modal properties and damage location. These drawbacks are easily demon-
strated analytically and experimentally. For example, study of a single-degree-
of-freedom system by Banks et al. [7] indicates both points. Here, the authors
show that the sensitivity of natural frequency to changes in sti!ness is inversely
proportional to sti!ness. Likewise, the sensitivity is inversely proportional to mass.
Depending on the nominal frequency, sti!ness, and mass values, small changes in
these parameters system can produce changes in frequency undetectable by modern
instrumentation and signal processing methods. An experimental illustration of
these points is found in Adams et al. [1]. Adams et al. analyzed shifts in resonant
frequencies of an aluminum bar under axial loading after initiating damage using
two saw cuts on opposite sides of the bar. Thirty per cent of the cross-sectional area
was removed. When damage was located at the center of the bar, frequency shifts
in the "rst three modes were 0)8%, 0%, and 0)8% respectively. With damage near
the end of the bar, frequency shifts of the "rst three modes were 0)7%, 1)3%
and 1% respectively; hence, small frequency shifts for a structure with signi"cant
damage are indicated, and sensitivity dependence on damage location is indicated.
In a "nite element study of a cracked cantilevered plate conducted by Swamidas
and Chen [6], a surface crack near the root of the plate with a width of 40% of
plate width and depth of 70% of plate thickness produces frequency shifts in
the "rst two bending modes of 0)68% and 0)27% respectively. Higher modes
exhibit frequency shifts of less than 0)09%. Other authors con"rm the modal
sensitivity issue, and they also consider other important factors a!ecting
modal sensitivity, including measurement noise (e.g., [8]) and model uncertainty
(e.g., [9]).

Though numerous authors have demonstrated the use of modal frequency shifts
for damage detection experimentally, removal of 10}40% of a cross-sectional area
to illustrate damage detection is common. In uniform structures, damage levels
introduced in these studies are often larger than the smallest crack that needs to be
detected. Nevertheless, the argument for using modal properties to detect damage
lies in the fact that the ability to detect and localize damage based on shifts in
characteristic frequencies is desirable. Although sensitivity issues in using modal
frequencies to detect damage remain a concern, there seems to be methods for
localizing damage based on shifts in modal frequencies. For example, Adams et al.
[1] develops and demonstrates a method to localize damage based on ratios of
frequency shifts between the "rst two or three modes. They show that for
a one-dimensional stress state and a symmetric structure it is possible to isolate
damage to one of two locations using two modes of axial vibration. A more recent
paper demonstrates adequate localization of damage by rank ordering of frequency
shifts in the "rst four modes during transverse vibration [3]. Finally, a number of
recent papers consider the use of other modal-based measures for damage
localization, including mode shape changes [10], &&strain'' mode shapes [6], and
measures based on mode shape curvature [11, 12].



Figure 1. (a) Traditional versus (b) proposed approach for sensitivity enhancement of modal
properties.
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This paper explores methods of enhancing sensitivity of modal frequencies to
small changes in structure parameters and local geometry through use of feedback
control. These methods are developed for smart structures, i.e., those capable of
self-excitation, self-sensing, and closed-loop vibration control. Figure 1 compares
other approaches to modal analysis with sensitivity-enhancing control approaches.
In the absence of loop closure, the portions of the system that can be modi"ed to
enhance sensitivity of modal properties are the input to the structure (through
careful selection of signals that excite characteristic frequencies) and the output
signal (through improved sensors, signal processing, neural network identi"cation,
etc.). In smart structures, the open-loop scenario is implemented by using
self-actuation of the structure to generate the input signal. Self-sensing provides the
output signal. In contrast, closed-loop control modi"es the system dynamics, such
that modal frequencies are placed at values that optimize frequency sensitivity to
damage-induced parameter variations. Here, self-actuation is used both to excite
the structure and to a!ect closed-loop dynamics, with self-sensing providing the
feedback signal as well as the output signal. In essence, closed-loop control
provides a means to optimize input shaping for damage detection. Moreover,
sensors and actuators required to implement sensitivity enhancing control are
identical to those required to control vibrations; hence, a smart structure could be
designed for the dual task of damage detection and vibration suppression. While
other modal parameter sensitivities might also be modi"ed through closed-loop
control, here we focus primarily on modal frequency sensitivities.

2. A DEMONSTRATION OF SENSITIVITY ENHANCEMENT

Objectives of closed-loop control normally include enhancing stability,
performance and robustness of the controlled system. Performance refers to
characteristics such as damping and response speed, and in smart structures,
closed-loop vibration control is normally applied to increase damping. One would
also want the control law to be robust, which simply means that it should enhance
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performance independent of uncertainties in the structure model on which the
control law is based, and that spillover, or excitation of unmodelled modes should
be avoided. The method proposed here turns the robust control problem around.
Instead of using a control law to make the system insensitive to changes in system
parameters, it should enhance or magnify sensitivity to such changes in
a predictable manner. In essence, we seek to increase observability of system
parameter variations through feedback control. An example, based on the
single-degree-of-freedom system used to discuss sensitivity issues in Banks et al. [7],
is presented here to illustrate the concept. Consider a lightly damped second order
system
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Equations (5) and (6) show that for the single-degree-of-freedom system, one should
reduce the natural frequency (make K

1
negative) to enhance sensitivity to changes

in sti!ness, and to enhance sensitivity to changes in mass, one should increase the
natural frequency (make K

1
positive). For example, if the open-loop natural

frequency and sti!ness are 10 rad/s and 1000 N/m, respectively, the open-loop
sensitivity to change in sti!ness is 0)005 m/N s (equation (2)). Reducing the natural



Figure 2. Sensitivity study for $10% sti!ness change in a single-degree-of-freedom structure. &&]''
marks nominal root locations. The line shows how the roots change as sti!ness varies within 10% of
its nominal value.
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frequency by a factor of 2 through closed-loop control increases the closed-loop
sensitivity by a factor of 2. These concepts are illustrated in Figures 2 and 3 using
a stochastic root locus.s In Figure 2, the locus of roots as k varies between $10%
of its nominal value are shown for the system under open-loop control, closed-loop
control that decreases the natural frequency (K

1
negative), and closed-loop control

that increases the natural frequency (K
1

positive). For both closed-loop systems,
damping is simultaneously increased using gain K

2
, since this is a desirable

closed-loop characteristic. &&]'' marks the nominal root locations, and the light,
dotted lines show the extent of root location variation, indicating the sensitivity of
the system to changes in parameters (the longer the line, the more the root varies for
the speci"ed uncertainty). By comparing the open-loop root variation to
closed-loop system 1, we see that reducing the natural frequency through control
increases the sensitivity, since the roots migrate farther from their nominal values.
Comparison to closed-loop system 2 shows that increasing the natural frequency
decreases sensitivity. The directional nature of root migration is also of importance,
as it shows that sti!ness changes at constant mass (and damping parameter b)
directly a!ect the damped natural frequency.

Figure 3 illustrates the e!ect of each control law on sensitivity to $10% changes
in mass. Here, nominal root locations are marked by &&s''. An increase in
sThis stochastic root locus [16], a tool for visualizing sensitivity to parameter uncertainty, shows
the migration of system eigenvalues (open-loop or closed-loop) as one or more parameters change.
Parameters may follow speci"c distributions, such as uniform, Gaussian, binary, or some other
distribution, and the distribution of root locations is determined by Monte Carlo simulation.



Figure 3. Sensitivity study for $10% mass change in a single-degree-of-freedom structure &&s''
marks nominal root locations. The line shows how the roots change as mass varies within 10% of its
nominal value.
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closed-loop natural frequency increases sensitivity to mass changes, as re#ected in
closed-loop system 2, and the direction of root migration di!ers from Figure 2. The
fact that e!ects of the two control laws on sensitivity to speci"c parameter
variations (mass or sti!ness) are opposite suggests that multiple control laws can be
designed to enhance sensitivities of di!erent &&damage mechanisms'', providing the
ability to distinguish between types of damage by successive application of di!erent
control laws during maintenance of the structure. Moreover, direction of root
migration may also aid in distinguishing one damage mechanism from another.

3. CONTROL SYSTEM DESIGN FOR SENSITIVITY ENHANCEMENT

3.1. SYSTEM AND CONTROL MODEL

State feedback control laws for sensitivity enhancement are designed for
homogeneous, one-dimensional beams under bending, whose transverse
displacement y(x, t) is described by a "nite-element model of an Euler}Bernoulli
beam with Kelvin}Voigt damping and appropriate boundary conditions. The
control model of the beam, or model of the beam from which state feedback control
gains are designed, consists of an n node "nite-element model. A higher order
"nite-element model with nt nodes constitutes the model of the actual system to
which the control law is applied. For either model, the dynamics describing
temporal variation of transverse displacement for the ith element are
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assumed to be proportional to strain rate, as in Kelvin}Voigt damping. Combining
elemental matrices, mass (M), sti!ness (K), and damping (C) matrices are formed,
and the relevant state-space representation of the control model is
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F
ij

is the total force applied at node j due to actuator i, and m is the number of
actuators. After appropriate boundary conditions for the beam are applied, some
state variables can be eliminated; for example, state variables y

1
and h

1
are

eliminated for a cantilevered beam based on boundary conditions.
The approach to constructing a higher order "nite-element model to represent

the actual system is identical, with nt replacing n. The "nite-element model of the
actual system is used to study damage detection. By changing one or more
parameters in a single element or several contiguous elements of the actual system,
and applying feedback control laws designed based on the control model to the
actual system, local damage can be simulated. For example, a reduction in the
thickness of a single element at zero reduction in mass simulates a crack as best as
possible with this linear model, while reduction in thickness and mass of one or
more contiguous elements may represent damage in the form of a hole or slot.
Spillover, or excitation of higher order modes is also examined through the
application of a control law developed using the low order structure model to the
higher order actual model.

3.2. IMPLEMENTATION OF STATE FEEDBACK CONTROL LAWS

In a smart structure, strain is usually the measured variable, and it is necessary to
estimate the state vector of equation (8) from strain measurements. Gopinathan
et al. [14] proposes a method for estimating transverse and angular displacement
along a beam based on strain measurements at each node. Strain (e) is related to
de#ection (y) through the curvature equation
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b
is the beam thickness. Approximating transverse displacement distribution

by a cubic spline, and strain distribution by a linear spline, a recursive relationship
between strain measured at point locations and transverse displacement is derived
[14]:
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is the element length. Velocities at each node, yR

i
and h0

i
, can be estimated by

di!erentiation or by implementing a state estimator using equations (10) and (11) as
observations. As an alternative to this recursive observer, a model-based observer
can be designed using standard linear-quadratic or pole-placement methods. To
design the model-based observer, the relationship between measured strain and
state elements must be provided through an output equation. The output equation
depends on the electromechanical coupling relationship between measured strain
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and mechanical displacements. The analytic derivation of such an output
relationship is given in [15]. Alternatively, a beam model can be developed
experimentally using frequency response methods, providing the transfer function
between the input voltage to an actuator and the strain output directly.

With one of these state estimation methods available, full-state feedback control
laws can be applied for vibration control or sensitivity enhancement by using
estimated transverse displacements and velocities at each node of the control model
as state feedback variables. Based on the single-degree-of-freedom system analyzed
above, placing closed-loop modal frequencies at values lower than open-loop
frequencies should enhance sensitivity to sti!ness changes; hence, we aim to reduce
modal frequencies through pole placement for detecting local reduction in sti!ness.
Analysis of controllability of the system shows that the beam is controllable for
a single input; however, multiple inputs may be desirable to maximize sensitivity
enhancement. A state feedback control law for a system with m actuators takes the
form F"!KcX, where Kc is a 4n]m control gain matrix, and X and F are as given
above. Denoting the control model of the system by (A, B), and the actual system by
(Aa , Ba), the roots of the closed-loop system formed by applying control law
F"!KcX to the actual system are given by the solutions to

jI!(Aa!BaKca)"0, (12)

where, for a clamped-free beam,

Kca"[Kb1 Kb2 2 Kbn~1
], Kbi

"[0
m]2(n~1)~2
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].

Kci
denotes the elements of the matrix Kc corresponding to common nodes of the

actual beam model and control model. Pole placement provides an established
methodology for "nding state feedback control gains to demonstrate sensitivity
enhancement. For systems where it is undesirable, due to computation
requirements, to estimate the state from strain measurements, output feedback may
be useful for sensitivity enhancement. In output feedback, strain measurements are
used directly to a!ect closed-loop dynamics. With output feedback, closed-loop
roots can no longer be placed arbitrarily, as with full state feedback; however, root
locus analysis can be used to design a sensitivity enhancing output feedback system,
as shown by example, below.

Sensitivity enhancement is demonstrated by simulation for a cantilevered beam
whose properties are given in Table 1. The beam is modelled by a low-order (nine
node) "nite-element model for control law design, and a 65 node "nite-element
model is chosen for the actual system. Table 1 shows insigni"cant di!erences in the
two models for the "rst four modes. It is assumed that a single actuator is available,
and two damage conditions are considered: (1) change in cross-sectional area of
a single element by 10%, with corresponding change in mass, and (2) a 5% change
in thickness of a single element with no change in mass. Damage to a single element
such as reduction in thickness corresponds to damage across the entire width of the
beam and element thickness (0)5/64 or 0)78 cm). A change in thickness (with or



TABLE 1

Beam and properties and open-loop modal frequencies of the control and actual models

Property Value

Length 0)5 m
Young's Modulus 7)17E10 Pa (Aluminum)

Thickness 1)6 mm
Width 2 cm
Density 2800 kg/m3

Control model nodes (n) 9
Actual model nodes (nt) 65
Modal frequencies of

actual model
!0)54$32)87j, !21)22$204)91j,

!166)36$552)30j,!638)82$932)49j
Modal frequencies of

control model
!0)54$32)87j, !21)24$204)92j,

!166)56$552)61j,!641)68$933)60j

TABLE 2

Desired and actual closed-loop root locations for full-state feedback

Property Value

Desired closed-loop
root locations

!0)54$24j, !21$150j, !166$320j

Undamaged closed-loop
roots of the actual model

!0)54$24j,!21$150j,!165)89$320j,
!638)82$932)54j

Undamaged closed-loop
roots of the control model

!0)54$24j,!21$150j,!166$320j,
!641)68$933)60j
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without mass reduction) changes the sti!ness at the damage location. The change in
sti!ness without mass reduction may re#ect change in cross-sectional properties
due, for example, to crack initiation; however, the model remains linear, and local
plastic deformation and yielding are not modelled.

A full-state feedback closed-loop control law is designed to shift the "rst three
modal frequencies down (at approximately constant fu) as indicated in Table 2.
The feedback control law is then applied to the actual system, with damage located
at a single element, and sensitivity enhancement is measured as a percent decrease
in closed-loop natural frequency of the damaged beam over the nominal
closed-loop natural frequency. Table 2 shows the closed-loop roots selected for
pole placement, the nominal (undamaged) closed-loop roots of the actual model,
and the nominal root locations for the control model. Again, no signi"cant
di!erence in closed-loop root locations arises due to the reduced-order control
model illustrating minimal spillover e!ects.

Figures 4 and 5 present results of the full-state feedback control law applied to
the cantilevered beam, as compared to open-loop vibration. Figure 4 shows
open-loop sensitivity of the "rst four modal frequencies to damage as a function of



Figure 4. Frequency shifts in "rst four modes of cantilevered beam under open-loop vibration for
damage in a single element along the beam at location x/¸: **, 10% thickness reduction, with
corresponding change in cross-sectional area, element mass, and area moment of inertia; - - - -, 5%
thickness reduction with no change in element mass. (a) Mode 1, (b) mode 2, (c) mode 3, (d) mode 4.
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damage location, for each damage condition. Maximum sensitivities under
open-loop vibration occur at the root of the beam, with the maximum sensitivity
barely exceeding a 1% frequency shift for severe damage, and never exceeding 0)5%
for modest damage. Figure 5 shows the same results for closed-loop vibration.
Here, sensitivity to damage near the root of the beam has increased by a factor of
approximately 60 ("rst mode) to a factor of 5 (third mode). Sensitivity of mode 4 is
unchanged, since this mode was not controlled. Additional modal sensitivities (not
shown in "gure) also remain largely unchanged. The fact that sensitivity of
uncontrolled modes remains unchanged indicates minimal spillover due to design
of the control law based on a low order model.

Figures 4 and 5 demonstrate enhanced sensitivity of the controlled system over
open-loop vibration for a single actuator at node 2. Control laws also were
designed for identical closed-loop root locations as given in Table 2, and a single
actuator at nodes 4 and 6 respectively. Figure 6 shows the resulting frequency shifts
in the "rst four modes for these actuator locations. Here, we note that the direction
of frequency shift and the magnitude of sensitivity enhancement as a function of
damage location depends signi"cantly on actuator location. For the actuator
located at node 2, near the root of the beam, sensitivity is enhanced signi"cantly
near the root, and less as the damage location progresses toward the tip. For an



Figure 5. Frequency shifts in "rst four modes of cantilevered beam under closed-loop vibration for
damage in a single element along the beam at location x/¸: **, 10% thickness reduction, with
corresponding change in cross-sectional area, element mass, and area moment of inertia; } } }, 5%
thickness reduction with no change in element mass. (a) Mode 1, (b) mode 2, (c) mode 3, (d) mode 4.
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actuator located at node 4 or node 6, sensitivity is enhanced signi"cantly in the "rst
two modes along most of the beam.

3.3. OUTPUT FEEDBACK

Results shown in Figures 4}6 demonstrated that full-state feedback closed-loop
control can signi"cantly enhance sensitivity to sti!ness reduction using a single
actuator. Next, we seek to enhance sensitivity using output feedback, in which state
estimation would not be required, and hence signi"cantly less real-time
computation would be required. With output feedback, closed-loop roots cannot
be arbitrarily placed, and root locus design methods are used to determine control
gains. Figure 7 shows a root locus for (positive) output feedback of a single sensor
collocated at node 2 of the beam with the actuator. The sensor location determines
the zero locations in the complex plane, and for the chosen sensor location,
closed-loop roots of all four modes migrate to lower frequencies as the gain
increases, indicating that sensitivity enhancement should occur. Closed-loop roots
of the "rst three modes as the feedback gain increases are shown in Figure 7. In
Figure 8, the sensitivity to damage for a feedback gain K"!5000 and the two



Figure 6. Frequency shifts in "rst four modes of cantilevered beam under closed-loop vibration for
damage in a single element along the beam at location x/¸. Damage mode is 5% thickness reduction
with no change in element mass: **, actuator at node 4; } } }, actuator at node 6. (a) Mode 1,
(b) mode 2, (c) mode 3, (d) mode 4.
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damage cases is examined. Results show that increases in sensitivity comparable to
the full-state feedback case are achievable with output feedback.

3.4. ENHANCEMENT OF MODE SHAPE CHANGES

Cornwell et al. [11] and Stubbs and Kim [12] present damage detection
measures that are based on the change in mode shape curvature due to damage.
While we focus on shaping modal frequency sensitivity here, we also demonstrate
modest sensitivity enhancement of mode shape changes through feedback control.
Figure 9 shows the di!erence in the undamaged and damaged normalized mode
shapes under open-loop control and closed-loop control when the beam is
damaged at element 10. The damage mode is 5% thickness reduction with no mass
reduction. Here, two control laws are implemented. Control law 1 is that designed
to target frequency sensitivity, as presented in Table 2, while Control law 2 shifts
the "rst three modal frequencies to higher values in order to enhance amplitude
sensitivity. The results show that a signi"cant spike in the mode shape di!erence
occurs at the damage location for both open-loop and closed-loop control.
However, sensitivity is an issue, as the percent change in mode shape at the damage



Figure 7. Output feedback root locus for system with a single sensor and actuator collocated at
node 2. &&]'' marks open-loop root locations, and &&s'' marks zero locations.
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location for the open-loop system is at best 0)6% (mode 1) and as low as 0)18%
(mode 3). Under Control law 1, the magnitude of the mode shape change is
enhanced signi"cantly only in mode 3, while for Control law 2, all of the controlled
modes exhibit modest mode shape change sensitivity enhancement. As a percent
change from the undamaged mode shape, mode 3 sensitivity changes from 0)18% in
the open-loop system to 0)89% in the closed-loop system.

4. CONCLUSIONS

A method of enhancing modal sensitivity to local damage using feedback control
is presented and demonstrated. Applying appropriate state or output feedback
control laws developed for a low order control model of a cantilevered beam to
higher order model of the beam results in signi"cant enhancement of the sensitivity
of controlled modes to damage. State feedback can be implemented through
estimation of state variables from strain measurements, or output feedback can be
implemented using the measured strains directly. The concepts presented here form
a basis for initial experiments and development of a control system design
methodology for enhancing modal sensitivity to damage in smart structures.



Figure 8. Frequency shifts in "rst four modes of cantilevered beam under closed-loop vibration
using output feedback for damage in a single element along the beam at location x/¸: **,
10% thickness reduction, with corresponding change in cross-sectional area, element mass, and
area moment of inertia; } } }, 5% thickness reduction with no change in element mass. (a) Mode 1,
(b) mode 2, (c) mode 3, (d) mode 4.

Figure 9. Di!erence between undamaged and damaged mode shape for open-loop vibration and
for two closed-loop systems:**, open-loop; } } }, control law 1; ) } ) } ) }), control law 2. (a) Mode 1,
(b) mode 2, (c) mode 3.
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